A note on Volterra and Baire spaces

نویسندگان

  • C. Yang College of Applied Science‎, ‎Beijing University of Technology‎, ‎Beijing 100124‎, ‎China
  • L. X. Peng College of Applied Science‎, ‎Beijing University of Technology‎, ‎Beijing 100124‎, ‎China
چکیده مقاله:

 In Proposition 2.6 in (G‎. ‎Gruenhage‎, ‎A‎. ‎Lutzer‎, ‎Baire and Volterra spaces‎, ‎textit{Proc‎. ‎Amer‎. ‎Math‎. ‎Soc.} {128} (2000)‎, ‎no‎. ‎10‎, ‎3115--3124) a condition that‎ ‎every point of $D$ is $G_delta$ in $X$ was overlooked‎. ‎So we‎ ‎proved some conditions by which a Baire space is equivalent to a‎ ‎Volterra space‎. ‎In this note we show that if $X$ is a‎ ‎monotonically normal $T_1$-space with countable pseudocharacter ‎and $X$ has a $sigma$-discrete dense subspace $D$‎, ‎then $X$ is a‎ ‎Baire space if and only if $X$ is Volterra‎. ‎We show that if $X$‎ ‎is a metacompact normal sequential $T_1$-space and $X$ has a‎ ‎$sigma$-closed discrete dense subset‎, ‎then $X$ is a Baire space‎ ‎if and only if $X$ is Volterra‎. ‎If $X$ is a generalized ordered‎ ‎(GO) space and has a $sigma$-closed discrete dense subset‎, ‎then‎ ‎$X$ is a Baire space if and only if $X$ is Volterra‎. ‎And also some‎ ‎known results are generalized‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a note on volterra and baire spaces

in proposition 2.6 in (g‎. ‎gruenhage‎, ‎a‎. ‎lutzer‎, ‎baire and volterra spaces‎, ‎textit{proc‎. ‎amer‎. ‎math‎. ‎soc.} {128} (2000)‎, ‎no‎. ‎10‎, ‎3115--3124) a condition that‎ ‎every point of $d$ is $g_delta$ in $x$ was overlooked‎. ‎so we‎ ‎proved some conditions by which a baire space is equivalent to a‎ ‎volterra space‎. ‎in this note we show that if $x$ is a‎ ‎monotonically normal $t_1$...

متن کامل

A Note on Almost Continuous Mappings and Baire Spaces

We prove the following theorem: THEOREM. Let Y be a second countable, infinite R0-space. If there are countably many open sets 01, 02, 0n, in Y such that 01 02 0..., then a topological space X is a Baire space if and only if every mapping f: XY is almost continuous on a dense subset of X. It is an improvement of a theorem due to Lin and Lin [2].

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Baire Spaces, Sober Spaces

In the article concepts and facts necessary to continue forma-lization of theory of continuous lattices according to [10] are introduced. The notation and terminology used here are introduced in the following papers:

متن کامل

Questions on generalised Baire spaces

When studying questions about real numbers, it is common practice in set theory to investigate the closely related Baire space ω and Cantor space 2 . These spaces have been extensively studied by set theorists from various points of view, e.g., questions about cardinal characteristics of the continuum, descriptive set theory and other combinatorial questions. Furthermore, the investigation of 2...

متن کامل

On large cardinals and generalized Baire spaces

Working under large cardinal assumptions, we study the Borel-reducibility between equivalence relations modulo restrictions of the non-stationary ideal on some fixed cardinal κ. We show the consistency of E ++,λ++ λ-club , the relation of equivalence modulo the non-stationary ideal restricted to Sλ ++ λ in the space (λ++)λ ++ , being continuously reducible to E ++ λ+-club , the relation of equi...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 41  شماره 6

صفحات  1445- 1452

تاریخ انتشار 2015-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023